Abstract

Using explicit solvent molecular dynamics simulations, we were able to obtain direct observations of shifts in the hydrogen-bonding register of an intermolecular β-sheet protein-peptide complex. The β-sheet is formed between the FHA domain of cancer marker protein Ki67 (Ki67FHA) and a peptide fragment of the hNIFK signaling protein. Potential encounter complexes of the Ki67FHA receptor and hNIFK peptide are misregistered states of the β-sheet. Rearrangements of one of these misregistered states to the native state were captured in three independent simulations. All three rearrangements occurred by a common mechanism: an aromatic residue of the peptide (F263) anchors into a transient hydrophobic pocket of the receptor to facilitate the formation of native hydrogen bonds. To our knowledge, these simulations provide the first atomically detailed visualizations of a mechanism by which nature might correct for errors in the alignment of intermolecular β-sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call