Abstract

This paper follows the hydration of both portland cement and tricalcium silicate pastes between 30min and 16h of hydration. In-situ fast X-ray computed tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution.The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. This behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.