Abstract

We carried out sub-Kelvin ultrasonic measurements for observation of vacancies in crystalline silicon. The longitudinal elastic constants of non-doped and B-doped floating zone (FZ) silicon crystals in commercial base revealed low-temperature elastic softening below 20 K. The applied magnetic fields turns the softening of the B-doped FZ silicon to a temperature-independent behavior, while the fields up to 16 T at base temperature 20 mK make no effect on the softening of the non-doped FZ silicon. This result means that the vacancy accompanying the non-magnetic charge state V 0 in the non-doped silicon and the magnetic V + in the B-doped silicon is responsible for the low-temperature softening through the Jahn–Teller effect. The direct observation of the vacancy using the sub-Kelvin ultrasonic measurements advances point defects controlling in silicon wafers and semiconductor devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.