Abstract

The morphology and structural changes of confined matter are still far from being understood. This report deals with the development of a novel in situ method based on the combination of anomalous small-angle X-ray scattering (ASAXS) and X-ray absorption near edge structure (XANES) spectroscopy to directly probe the evolution of the xenon adsorbate phase in mesoporous silicon during gas adsorption at 165 K. The interface area and size evolution of the confined xenon phase were determined via ASAXS demonstrating that filling and emptying the pores follow two distinct mechanisms. The mass density of the confined xenon was found to decrease prior to pore emptying. XANES analyses showed that Xe exists in two different states when confined in mesopores. This combination of methods provides a smart new tool for the study of nanoconfined matter for catalysis, gas, and energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.