Abstract

The ability to gradually modify the atomic structures of nanomaterials and directly identify such structural variation is important in nanoscience research. Here, we present the first example of a high-pressure single-crystal X-ray diffraction analysis of atomically precise metal nanoclusters. The pressure-dependent, subangstrom structural evolution of an ultrasmall gold nanoparticle, Au25S18, has been directly identified. We found that a 0.1 Å decrease of the Au-Au bond length could induce a blue-shift of 30 nm in the photoluminescence spectra of gold nanoclusters. From theoretical calculations, the origins of the blue-shift and enhanced photoluminescence under pressure are investigated, which are ascribed to molecular orbital symmetry and conformational locking, respectively. The combination of the high-pressure in situ X-ray results with both theoretical and experimental optical spectra provides a direct and generalizable avenue to unveil the underlying structure-property relations for nanoclusters and nanoparticles which cannot be obtained through traditional physical chemistry measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call