Abstract

Low-dimensional copper halides, such as CsCu2I3, have emerged as promising LED materials featuring strongly Stokes-shifted photoluminescence with high quantum yield. Previous calculations suggest an exciton self-trapping mechanism; however, direct experimental evidence for this process is still lacking. Here, we present femtosecond UV-vis transient absorption experiments of CsCu2I3 thin films. The films were analyzed by SEM, XRD, and 133Cs/63Cu NMR for crystallinity and defects. Unique spectral dynamics is observed. The band gap absorption exhibits a characteristic double-peak structure arising from the 130 meV spin-orbit splitting of the copper d electrons. Emission at the direct band gap disappears because of the formation of the lowest-energy self-trapped exciton state. We determined the time constant of 12 ps for the trapping process of thermally relaxed free excitons, with an energy barrier of at least 60 meV. The data are successfully modeled by global kinetic analysis, providing also accurate time constants for charge carrier cooling processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call