Abstract

Carbon disulfide (CS2) is a typical triatomic molecule. Its photodissociation process has generally been assumed to proceed to CS and S primary products via single bond fission. However, recent theoretical calculations suggested that an exit channel to produce C + S2 should also be energetically accessible. Here, we report the direct experimental evidence for the C + S2 channel in CS2 photodissociation by using the velocity map ion imaging technique with two-photon UV and one-photon vacuum UV (VUV) excitations. The detection of the C (3P) products illustrates that the ground state and the electronically excited states of S2 coproducts are formed within highly excited vibrational states. The very weak anisotropic distributions indicate relatively slow dissociation processes. The possible dissociation mechanism involves molecular isomerization of CS2 to linear-CSS from the excited 1B2 (21Σ+) state via vibronic coupling with the 1Π state followed by an avoided crossing with the ground state surface. Our results imply that the S2 molecules observed in comets might be primarily formed in CS2 photodissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.