Abstract
The formation mechanisms of evaporated Pd islands on the reconstructed Au(111) $22\ifmmode\times\else\texttimes\fi{}\sqrt{3}$ herringbone surface have been here studied by scanning tunneling microscopy (STM) at room temperature. Atomically resolved STM images at the very early stages of growth provide a direct observation of the mechanisms involved in preferential Pd islands nucleation at the elbows of the herringbone structure. At low Pd coverage the Au(111) herringbone structure remains substantially unperturbed and isolated Pd atoms settled in hollow sites between Au atoms are found nearby the elbows and the distortions of the reconstructed surface. In the same regions, at extremely low coverage (0.003 ML), substituted Pd atoms in lattice sites of the Au(111) surface are also observed, revealing the occurrence of a place exchange mechanism. Substitution seems to play a fundamental role in the nucleation process, forming aggregation centers for incoming atoms and thus leading to the ordered growth of Pd islands on Au(111). Atomically resolved STM images of Pd islands reveal a close-packed arrangement with lattice parameter close to the interatomic distance between gold atoms in the fcc regions of the Au(111) surface. Distortion of the herringbone structure for Pd coverages higher than 0.25 ML indicates strong interaction between the growing islands and the topmost Au(111) layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.