Abstract

The dissolution and passivation of pure Cu and Cu-5 wt pct Ag anodes in H2SO4-CuSO4 electrolyte were investigated by a direct observation method that combined the techniques of optical microscopy and channel flow double electrode. Linear sweep voltammetry of the anodes showed that the dissolution of Cu transited from the charge transfer-controlled reaction to the mass transfer-controlled reaction, followed by the passivation of the electrodes. The direct observation of the pure Cu anode revealed that Cu particles were generated on the surface and the particles fell away during passivation. On the other hand, a slime layer of Ag particles that adhered to the surface was generated during the dissolution of the Cu-5 wt pct Ag anode. The Cu-5 wt pct Ag anode was passivated with a lower current density than the pure Cu anode, which suggested that the morphology and adhesive characteristics of the slime on the anode affected the passivation. The direct observation method described herein is useful for understanding reactions on electrodes that undergo drastic changes in their surface morphology. Information obtained from this method can help with the development of new processes for the effective utilization of limited natural resources and energy, such as the recycling of Cu by electrorefining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.