Abstract

AbstractOxygen vacancy (Vo) on transition metal oxides plays a crucial role in determining their chemical/physical properties. Conversely, the capability to directly detect the changing process of oxygen vacancies (Vos) will be important to realize their full potentials in the related fields. Herein, with a novel synchronous illumination X‐ray photoelectron spectroscopy (SI‐XPS) technique, we found that the surface Vos (surf‐Vos) exhibit a strong selectivity for binding with the water molecules, and sequentially capture an oxygen atom to achieve the anisotropic self‐healing of surface lattice oxygen. After this self‐healing process, the survived subsurface Vos (sub‐Vos) promote the charge excitation from Ti to O atoms due to the enriched electron located on low‐coordinated Ti sites. However, the excessive sub‐Vos would block the charge separation and transfer to TiO2 surfaces resulted from the destroyed atomic structures. These findings open a new pathway to explore the dynamic changes of Vos and their roles on catalytic properties, not only in metal oxides, but in crystalline materials more generally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.