Abstract

Total photoyield experiments are applied to characterize p-, intrinsic, and n-type diamond with hydrogen-terminated surfaces. On all hydrogen-terminated samples a photoelectron threshold energy of 4.4 eV is detected which is discussed in detail in this letter. We attribute this threshold to the energy gap between the valence-band maximum and the vacuum level, which is 1.1 eV below the conduction-band minimum, and generally referred to as ”negative electron affinity” (NEA). Hydrogen terminated p-type and intrinsic diamond show a rise of secondary photoyield in the excitation regime hν>5.47eV. However, this is not detected on n-type diamond. We ascribe this to the formation of an upward surface band bending in the vicinity of the n-type diamond surface which acts as an energy barrier for electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.