Abstract

Charge-density-waves, which occur mainly in low-dimensional systems, have a macroscopic wave function similar to superfluids and superconductors. Kosterlitz–Thouless transition is observed in superfluids and superconductors, but the presence of Kosterlitz–Thouless transition in ultra-thin charge-density-waves systems has been an open problem. We report the direct real-space observation of charge-density-waves with new order states in mono-layer, bi-layer, and tri-layer 1T-TaS2 crystals using a low voltage scanning-transmission-electron-microscopy without a substrate. This method is ideal to observe local atomic structures and possible defects. We clearly observed that the mono-layer crystal has a new triclinic stripe charge-density-waves order without satisfying the triple q condition q1 + q2 + q3 = 0. A strong electron-phonon interaction gives rise to new crevasse (line) type defects instead of disclination (point) type defects due to the Kosterlitz–Thouless transition. These results reaffirm the importance of the electron-phonon interaction in mono-layer nanophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.