Abstract
By utilizing a sharp magnetic needle made of a sintered Nd2Fe14B permanent magnet, we were able to produce a strong magnetic field of up to approximately 560kA∕m in a transmission electron microscope and succeeded in observing the magnetization reversal in a thin film of sintered Nd2Fe14B by in situ Lorentz microscopy. The increase in the magnetic field induced by the magnetic needle led to a pair of straight magnetic domain walls forming abruptly from the grain boundary. The successive nucleation in the neighboring grain started at the grain boundary adjacent to the magnetic domain wall formed first. Eventually, the magnetic domain walls in the neighboring grains connected and moved continuously and finally disappeared.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.