Abstract

Strain-mediated magnetoelectric (ME) coupling effect is expected in self-assembly heterostructures engineered by ferroelectric and ferromagnetic materials, contributing to the enhanced overall magnetoelectric effect. Microstructures as well as the connectivity configuration are considered to play a significant role in achieving efficient magnetoelectric properties. Different from the conventional (1-3) and (2-2) type composite films, we fabricate BiFeO3-CoFe2O4 (BFO-CFO) composite thin films with a novel quasi (0-3) type connectivity via a dual-target pulsed laser deposition process. The self-assembly growth mechanism has been studied, which demonstrates that the perovskite (BFO) matrix segments the connectivity of spinel (CFO) resulting in a quasi (0-3) composite. Direct observation of ferroelectric domain wall motion under external magnetic fields proves a strong magnetoelectric coupling effect in these (0-3) thin films. Our preliminary findings reveal the promising application potential of this new structure as multiferroic domain wall devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.