Abstract

We report electron-atom Compton scattering experiments on the ${\mathrm{H}}_{2}$ and ${\mathrm{D}}_{2}$ molecules. Energy-loss spectra of electrons quasielastically backscattered at an angle of 135\ifmmode^\circ\else\textdegree\fi{} are measured as a function of azimuthal angle at an incident electron energy of 2.0 keV. Momentum distributions of the H and D atoms due to molecular vibration are extracted from the experimental data by using a protocol that we propose here. The results are successfully compared with theoretical ones predicted by the molecular vibrational wave functions. It is shown that electron-atom Compton scattering has a unique ability to provide direct information about intramolecular motion of each atom with different mass numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.