Abstract

We demonstrate the fast, direct, and quantitative observation of temperature- and comonomer- induced changes in the interfacial size and composition in phase-separated styrene-butadiene-styrene block copolymers by double-quantum-filtered proton spin-diffusion NMR experiments performed under high-resolution magic-angle spinning conditions. The experiment is based on the dipolar-mediated diffusion of spin magnetization from the (styrenic) rigid phase through a more mobile interphase of variable size and composition into the soft (polybutadiene) domain. The experiment spectroscopically distinguishes between mobilized styrene segments located in the interphase and those mixed (dissolved) in the bulk of the mobile domain. The results indicate that temperature-induced softening due to mobilization of styrene units at the interface and the tendency to become part of an extended interphase is stronger for systems with a lower segregation strength, having statistically distributed styrene comonomers in the soft domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.