Abstract
Crack propagation along grain boundaries in sintered silicon nitride (Si3N4) was investigated by in-situ straining experiments at room temperature in a transmission electron microscope, using a high-precision microindenter. Using this in-situ technique, cracks introduced were introduced in situ and observed propagating along grain boundaries. High-resolution electron microscopy observation revealed that the propagation of the intergranular crack takes place at an interface between the Si3N4 grains and the intergranular glassy film (IGF). This suggests that the Si3N4/IGF interface has a relatively high excess energy. The result was compared with a theoretical calculation using a molecular dynamics simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.