Abstract

We report on the evaporation of hexane from porous alumina and silicon membranes. These membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction. For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation proceeds by cavitation. Measurements of the pressure dependence of the cavitation rate follow the predictions of the bulk, homogeneous, classical nucleation theory, definitively establishing the relevance of homogeneous cavitation as an evaporation mechanism in mesoporous materials. Our results imply that porous alumina membranes are a promising new system to study liquids in a deeply metastable state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.