Abstract

AbstractGene delivery is a promising way to treat hereditary diseases and cancer; however, there is little understanding of DNA:carrier complex mechanical properties, which may be critical for the protection and release of nucleic acids. We applied optical tweezers to directly measure single‐molecule mechanical properties of DNA condensed using 19‐mer poly‐L‐lysine (PLL) or branched histidine–lysine (HK) peptides. Force–extension profiles indicate that both carriers condense DNA actively, showing force plateaus during stretching and relaxation cycles. As the environment such as carrier concentration, pH, and the presence of zinc ions changes, DNA:HK complexes showed dynamically regulated mechanical properties at multiple force levels. The fundamental knowledge from this study can be applied to design a mechanically tailored complex which may enhance transfection efficiency by controlling the stability of the complex temporally and spatially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.