Abstract

ABSTRACTWe have used an ultrahigh vacuum scanning electron microscope to carry out cross sectional secondary electron imaging, cathodoluminescence spectroscopy, and cathodoluminescence imaging on GaN grown on sapphire by hydride vapor phase epitaxy. These measurements provide evidence for deep level defects highly localized at the GaN, sapphire interface as well as defects extending into both the semiconductor film and the substrate. The different spatial distributions of these radiative defects provide information on the physical origin of these electrically active features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.