Abstract

Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G(-) band is observed to downshift with small applied gate voltages, with the minima occurring at E(F) = +/-(1)/(2)E(phonon), contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages results in a "W"-shaped Raman shift profile that agrees well with a nonadiabatic phonon renormalization model. This behavior constitutes the first experimental confirmation of the theoretically predicted breakdown of the Born-Oppenheimer approximation in individual single-walled carbon nanotubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.