Abstract
Aberration correction in scanning transmission electron microscopy (STEM) enables an atomic-scale probe size of ∼0.1nm at a low accelerating voltage of 80kV that avoids knock-on damage in materials including light elements such as oxygen. We used this advanced method of microscopy to directly observe atomic columns in a (Bi,Pb)2Sr2Ca2Cu3O10+δ (Bi-2223) superconducting wire produced by a powder-in-tube method. Using the atomic-number (Z) contrast mechanism, incoherent high-angle annular dark-field (HAADF) imaging clearly showed the atomic columns. Atomic displacements toward the boundary with a maximum magnitude of ∼0.26nm enable each atomic layer to be continuous at edge grain boundaries (EGBs). The grains tend to be terminated with deficient (Bi,Pb)–O single layers at c-axis twist boundaries (TWBs) and small-angle asymmetrical tilt boundaries (ATBs); a quantitative HAADF analysis showed that the occupancies of the (Bi,Pb) sites around these boundaries are ∼0.66 and ∼0.72, respectively. Electron energy-loss spectroscopy (EELS) mapping successfully visualized atomic columns in the half-unit cell intergrowth of (Bi,Pb)2Sr2CaCu2O8+δ (Bi-2212) and (Bi,Pb)2Sr2Ca3Cu4O12+δ (Bi-2234) phases. Furthermore, the HAADF analysis indicated that the occupancy of the (Bi,Pb) sites is modulated between ∼0.88 and 1.0 along the diagonal direction of the primitive perovskite cell with the same period as the structural modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.