Abstract

Single-molecular techniques have characterized dynamics of molecular motors such as flagellum in bacteria and myosin, kinesin, and dynein in eukaryotes. We can apply these techniques to a motility machine of archaea, namely, the archaellum, composed of a thin helical filament and a rotary motor. Although the size of the motor hinders the characterization of its motor function under a conventional optical microscope, fluorescence-labeling techniques allow us to visualize the architecture and function of the archaellar filaments in real time. Furthermore, a tiny polystyrene bead attached to the filament enables the visualization of motor rotation through the bead rotation and quantification of biophysical properties such as speed and torque produced by the rotary motor imbedded in the cell membrane. In this chapter, I describe the details of the above biophysical method based on an optical microscope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.