Abstract

We directly observed anodic dissolution and subsequent filament growth behavior in a planar atomic switch structure with Ag salt incorporated polyethylene oxide (Ag-PEO) film using in situ optical microscopy and ex situ scanning electron microscopy. The high ionic conductivities of Ag-PEO films enable the investigation of filament formation under voltage bias, even in micrometer-scaled devices. It was found that the filament formation changes from unidirectional growth to dendritic growth, depending on its distance from the grounded electrode. Based on this understanding of filament growth dynamics in planar devices, highly stable resistive switching was achieved in an Ag/Ag-PEO/Pt stacked device with an Ag-PEO film thickness of 100 nm. The device showed repeated switching operations for more than 102 sweep cycles, with a high ON/OFF resistance ratio of 105.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call