Abstract

The vast majority of our understanding about the deformation mechanisms in nanocrystalline materials is limited to information gained from experimental and theoretical characterization of FCC materials. Related behavior in nanocrystalline BCC materials is not as frequently studied, and thus outstanding questions remain regarding deformation regimes and Hall-Petch trends. Using in situ TEM, we investigate the deformation mechanisms of nanocrystalline BCC iron films with an average grain size of 35nm produced by physical vapor deposition. The tensile experiments showed that fracture resulted after strains of about 5%. Crack propagation occurred primarily by separation of grain boundaries at the crack tip, which was accompanied by localized intragranular ductile (often superplastic) fracture. Deformation at the crack tip was accommodated by dislocation motion, grain rotation, and grain growth. No evidence was observed of twinning in nanocrystalline BCC iron. The concurrent nature of the grain rotation and dislocation motion indicates that grain rotation occurs at fairly large grain sizes and there is no sharp transition from dislocation-mediated to grain boundary sliding mechanisms as grain size is decreased in BCC iron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.