Abstract
Femtosecond (fs) and nanosecond (ns) transient absorption (TA) and single pulse transient resonance Raman spectroscopic investigation of the intermediates after laser photolysis of 4-phenoxyphenyl azide in acetonitrile and mixed aqueous solution is reported. fs-TA results show that the singlet 4-phenoxyphenylnitrene was produced immediately after photolysis of the azide. Then, the singlet nitrene underwent intersystem crossing (ISC) and ring expansion to generate triplet nitrene and ketenimine in acetonitrile with t = 346 ps or protonation in mixed aqueous solution with t = 37 ps, respectively, a little slower than the counterparts of the methoxy one (108 and 5.4 ps for ISC and protonation processes, respectively). The transient Raman spectrum combined density functional theory (DFT) calculation predicting the structure and vibrational frequencies suggested that phenoxyphenylnitrenium ion has a comparable quinoidal character to that of methoxy- and ethoxy-phenylnitrenium ions. All of these results indicated that the phenoxy substitution has some impact on the reactivity of phenylnitrene but a slight influence on the structure of phenylnitrenium ion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.