Abstract

ABSTRACTDirect numerical simulations have been applied to simulate flows with polymer additives. FENE-P (finite-extensible-nonlinear-elastic-Peterlin) dumbbell model solving for the conformation tensor is adopted to investigate the influence of the polymer on the flowfield. Boundary treatments of the conformation tensor on the flowfield are examined first, where boundary condition based on the linear extrapolation scheme provides more accurate results with second-order accurate error norms. Further simulations of the turbulent channel flow at different Weissenberg numbers are also conducted to investigate the influence on drag reduction. Drag reduction increases in tandem with the increase of Weissenberg number and the increase saturates at Weτ~200, where the drag reduction is close to the maximum drag reduction (MDR) limit. At the regime of y+ > 5, the viscous layer thickens with the increase of the Weissenberg number showing a departure from the traditional log-law profile, and the velocity profiles approach the MDR line at high Weissenberg number. The Reynolds stress decreases in tandem with the increase of Weτ, whereas the levels of laminar stress and polymer stress act adversely. However, as the Weissenberg number increases, the proportion of the laminar stress in the total stress increases, and this contributes to the drag reduction of the polymer flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call