Abstract

A combined experimental and numerical study of transitional pulsatile flow through a planar constriction is presented. The parametric space that we adopt is similar to the one reported in a variety of past experiments relevant to the flow through stenosed arteries. In general, the flow just downstream of the constriction is dominated by the dynamic of the accelerating/decelerating jet that forms during each pulsatile cycle. We found a switch in the shedding frequency and roll-up dynamics, just after the flow rate approaches its maximum value in the cycle. The flow in the reattached area further downstream is also affected by the jet dynamics. A ‘synthetic’ turbulent-like wall-layer develops, an is constantly supported by streamwise vortices that originate from the spanwise instabilities of the large coherent structures generated by the jet. The relation of these structures to the phase-averaged turbulent statistics and the turbulent kinetic energy budgets is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.