Abstract

We carry out numerical simulations of wall-bounded stably stratified flows. We mainly focus on how stratification affects the near-wall turbulence at moderate Reynolds numbers, i.e. Reτ = 360. A set of fully-resolved open channel flow simulations is performed, where a stable stratification has been introduced through a negative heat flux at the lower wall. In agreement with previous studies, it is found that turbulence cannot be sustained for h/L values higher than 1.2, where L is the so-called Monin-Obukhov length and h is the height of the open channel. For smaller values, buoyancy does not re-laminarize the flow, but nevertheless affects the wall turbulence. Near-wall streaks are weakly affected by stratification, whereas the outer modes are increasingly damped as we move away from the wall. A decomposition of the wall-normal velocity is proposed in order to separate the gravity wave and turbulent flow fields. This method has been tested both for open channel and full channel flows. Gravity waves are likely to develop and to dominate close to the upper boundary (centerline for full channel). However, their intensity is weaker in the open channel, possibly due to the upper boundary condition. Moreover, the presence of internal gravity waves can also be deduced from a correlation analysis, which reveals (together with spanwise spectra) a narrowing of the outer structures as the stratification is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call