Abstract

In this paper, a numerical investigation of three-dimensional round jets subjected to streamwise and azimuthal perturbations is reported. The main objective of the study is to give a consistent scenario for the breaking of rotational symmetry in such flows which may ultimately lead to the production of intense side jets. In particular it is shown that the development of the Widnall instability on the primary vortex rings and the evolution of the Bernal and Roshko [J. Fluid Mech. 170, 499 (1986)] streamwise vortices generated by the instability of the braid could be deeply intertwined. A comprehensive discussion of the vortex induction mechanisms leading to the reorientation of the initial vorticity both in the ring and braid regions and to the deformation of the rings is presented. The recent analysis by Monkewitz and Pfizenmaier [Phys. Fluids A 3, 1356 (1991)] is confirmed in the sense that strong radial ejection of fluid is not directly linked to the deformation of the vortex rings but rather to the occurrence of coherent streamwise vortex pairs. However, the final relative position of the streamwise vortex pairs with respect to the deformations of the vortex rings differs slightly from Monkewitz and Pfizenmaier’s proposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.