Abstract

Deterministic route to turbulence creation in 2D wall boundary layer is shown here by solving full Navier-Stokes equation by dispersion relation preserving (DRP) numerical methods for flow over a flat plate excited by wall and free stream excitations. Present results show the transition caused by wall excitation is predominantly due to nonlinear growth of the spatiotemporal wave front, even in the presence of Tollmien-Schlichting (TS) waves. The existence and linear mechanism of creating the spatiotemporal wave front was established in Sengupta, Rao and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] via the solution of Orr-Sommerfeld equation. Effects of spatiotemporal front(s) in the nonlinear phase of disturbance evolution have been documented by Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a flow is taken from the receptivity stage to the fully developed 2D turbulent state exhibiting a k(-3) energy spectrum by solving the Navier-Stokes equation without any artifice. The details of this mechanism are presented here for the first time, along with another problem of forced excitation of the boundary layer by convecting free stream vortices. Thus, the excitations considered here are for a zero pressure gradient (ZPG) boundary layer by (i) monochromatic time-harmonic wall excitation and (ii) free stream excitation by convecting train of vortices at a constant height. The latter case demonstrates neither monochromatic TS wave, nor the spatiotemporal wave front, yet both the cases eventually show the presence of k(-3) energy spectrum, which has been shown experimentally for atmospheric dynamics in Nastrom, Gage and Jasperson [Nature 310, 36 (1984)]. Transition by a nonlinear mechanism of the Navier-Stokes equation leading to k(-3) energy spectrum in the inertial subrange is the typical characteristic feature of all 2D turbulent flows. Reproduction of the spectrum noted in atmospheric data (showing dominance of the k(-3) spectrum over the k(-5/3) spectrum in Nastrom et al.) in laboratory scale indicates universality of this spectrum for all 2D turbulent flows. Creation of universal features of 2D turbulence by a deterministic route has been established here for the first time by solving the Navier-Stokes equation without any modeling, as has been reported earlier in the literature by other researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.