Abstract

A numerical algorithm was developed for solving the incompressible Navier-Stokes equations in curvilinear orthogonal coordinates. The algorithm is based on a central-difference discretization in space and on a third-order accurate semi-implicit Runge-Kutta scheme for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and the pressure gradient in the kinetic energy production. The method was applied to the direct numerical simulation of turbulent flows between two eccentric cylinders. Numerical computations were performed at Re = 4000 (where the Reynolds number Re was defined in terms of the mean velocity and the hydraulic diameter). It was found that two types of flow develop depending on the geometric parameters. In the flow of one type, turbulent fluctuations were observed over the entire cross section of the pipe, including the narrowest gap, where the local Reynolds number was only about 500. The flow of the other type was divided into turbulent and laminar regions (in the wide and narrow parts of the gap, respectively).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.