Abstract

In this Note, we present results of the numerical simulation of transition to turbulence for a purely oscillatory channel flow. These simulations were performed for various values of the Reynolds number, the so-called Stokes parameter being equal to 4. The methodology used for the flow simulation relies on a combination of finite element space approximations with time-discretization by operator splitting; it has shown to be very effective, even when it is applied to relatively complex domains with strong expansions at the inlet and outlet of the channel. The numerical results obtained agree qualitatively well with previous experiments by other investigators. To cite this article: L.H. Juárez, E. Ramos, C. R. Mecanique 331 (2003).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.