Abstract
Direct numerical simulations (DNS) were performed to investigate the laminar–turbulent transition in a boundary layer on a sharp cone with an isothermal wall at Mach 6 and at zero angle of attack. The motivation for this research is to make a contribution towards understanding the nonlinear stages of transition and the final breakdown to turbulence in hypersonic boundary layers. In particular, the role of second-mode fundamental resonance, or (K-type) breakdown, is investigated using high-resolution ‘controlled’ transition simulations. The simulations were carried out for the laboratory conditions of the hypersonic transition experiments conducted at Purdue University. First, several low-resolution simulations were carried out to explore the parameter space for fundamental resonance in order to identify the cases that result in strong nonlinear interactions. Subsequently, based on the results from this study, a set of highly resolved simulations that proceed deep into the turbulent breakdown region have been performed. The nonlinear interactions observed during the breakdown process are discussed in detail in this paper. A detailed description of the flow structures that arise due to these nonlinear interactions is provided and an analysis of the skin friction and heat transfer development during the breakdown is presented. The controlled transition simulations clearly demonstrate that fundamental breakdown may indeed be a viable path to complete breakdown to turbulence in hypersonic cone boundary layers at Mach 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.