Abstract
Resonant acoustic liners are installed in jet engines to reduce noise by converting sound into vorticity-bound fluctuations. This work aims to study the acoustically excited flow field inside and outside a honeycomb liner under a Mach 0.5 turbulent boundary layer using DNS, with a focus on the interaction between the orifice and the boundary layer. The simulations are conducted in three steps: first, a RANS simulation is performed to obtain the basic flow conditions and a reasonable comparison is found between the RANS simulation data and experimental data taken from NASA Langley. The RANS data also serves as guidelines for the incoming turbulent boundary layer generation. Second, a temporally evolving Mach 0.5 compressible turbulent boundary layer is generated over a perfectly flat wall. Since the temporal boundary layer is growing in time, the momentum thickness Reynolds number (Re�) varies from 1385 to 2990. Quantitative analyses are performed at Re� = 2310 and the simulation data agree well with both the previous experimental and simulation results in several aspects. Finally, acoustic waves at different sound pressure levels (SPLs) are enforced when the turbulent boundary layer is present. Using flow visualization of the turbulent boundary layer and orifice interaction, basic flow features near or far away from the liner orifice are presented. Several flow properties are also quantified. These analysis will be helpful to reveal the behavior of conventional honeycomb liners under turbulent boundary layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.