Abstract

In the present work the dynamics of bubbles containing compressible gas is studied in the presence of an acoustic field at low Reynolds numbers. The numerical approach is based on the boundary element method (BEM), which is effective for three-dimensional simulation. The application of the standard BEM to the compressible bubble dynamics faces the problem of the degeneracy of the algebraic system. To solve this problem, additional relationships based on the Lorentz reciprocity principle are used. Test calculations of the dynamics of one and several bubbles in an acoustic field are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.