Abstract

We report direct numerical simulations of the fully developed turbulent natural convection flow of a Boussinesq fluid (Pr = 0.71) in a vertical channel. One wall is heated with a constant heat flux and the other is assumed to be perfectly insulated. Simulations were performed at three different Rayleigh numbers (Ra = 5 × 105, 106 and 5 × 106). Predictions of the time averaged velocities, temperatures and intensities of the fluctuations agree with experiments reported in the literature. Under the fully developed flow conditions considered in this study the shear stress is greater on thermally active wall than that on the adiabatic wall, but the turbulent intensities and the turbulent shear stress are greater near the insulated wall. Conversely, the intensities of the temperature fluctuations and turbulent heat fluxes are higher near the thermally active wall than those near the adiabatic wall. Contrary to the vertical channel with constant but different wall temperatures, where buoyancy and turbulent shear dominate the generation of turbulent kinetic energy, in the asymmetrically heated channel the turbulent shear stress is the principal mechanism of turbulent kinetic energy production as in a forced convection channel flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.