Abstract

In this paper, the entrainment and movement of coarse particles on the bed of an open channel is numerically investigated. Rather than model the sediment transport using a concentration concept, this study treats the sediment as individual particles and investigates the interaction between turbulent coherent structures and particle entrainment. The applied methodology is a combination of the direct numerical simulation of turbulent flow, the combined finite-discrete element modeling of particle motion and collision, and the immersed boundary method for the fluid-solid interaction. In this study, flow over a water-worked rough-bed consisting of 2-3 layers of densely packed spheres is adopted and the Shields function is 0.065 which is just above the entrainment threshold to give a bed-load regime. Numerical results for turbulent flow, sediment entrainment statistics, hydrodynamic forces acting on the particles, and the interaction between turbulence coherent structures and particle entrainment are presented. It is shown that the presence of entrained particles significantly modifies the mean velocity and turbulence quantity profiles in the vicinity of a rough-bed and that the instantaneous lift force can be larger than a particle's submerged weight in a narrow region above the effective bed location, although the mean lift force is always smaller than the submerged weight. This, from a hydrodynamic point of view, presents strong evidence for a close cause-and-effect relationship between coherent structures and sediment entrainment. Furthermore, instantaneous numerical results on particle entrainment and the surrounding turbulent flow are reported which show a strong correlation between sediment entrainment and sweep events and the underlying mechanisms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.