Abstract

A high-order numerical method is employed to investigate flow in a rotor/stator cavity without heat transfer and buoyant flow in a rotor/rotor cavity. The numerical tool used employs a spectral element discretisation in two dimensions and a Fourier expansion in the remaining direction, which is periodic and corresponds to the azimuthal coordinate in cylindrical coordinates. The spectral element approximation uses a Galerkin method to discretise the governing equations, similarly to a finite element method, but employs high-order polynomials within each element to obtain spectral accuracy. A second-order, semi-implicit, stiffly stable algorithm is used for the time discretisation, and no subgrid modelling is included in the governing equations. Numerical results obtained for the rotor/stator cavity compare favourably with experimental results for Reynolds numbers up to Re1 = 106 in terms of velocities and Reynolds stresses. For the buoyancy-driven flow, the energy equation is coupled to the momentum equations via the Boussinesq approximation, which has been implemented in the code considering two different formulations. Numerical predictions of the Nusselt number obtained using the traditional Boussinesq approximation are considerably higher than available experimental data. Much better agreement is obtained when the extended Boussinesq approximation is employed. It is concluded that the numerical method employed has considerable potential for further investigations of rotating cavity flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.