Abstract

Direct numerical simulation (DNS) has been carried out to investigate the effect of weak rarefaction on turbulent gas flow and heat transfer characteristics in microchannel. The Reynolds number based on the friction velocity and the channel half width is 150. Grid number is 64 × 128 × 64. Fractional time-step method is employed for the unsteady Navier–Stokes equations, and the governing equations are discretized with finite difference method. Statistical quantities such as turbulent intensity, Reynolds shear stress, turbulent heat flux and temperature variance are obtained under various Knudsen number from 0 to 0.05. The results show that rarefaction can influence the turbulent flow and heat transfer statistics. The streamwise mean velocity and temperature increase with increase of Kn number. In the near-wall-region rarefaction can increase the turbulent intensities and temperature variance. The effects of rarefaction on Reynolds shear stress and wall-normal heat flux are presented. The instantaneous velocity fluctuations in the vicinity of the wall are visualized and the influence of Kn number on the flow structure is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.