Abstract

Three-dimensional direct numerical simulation has been performed to investigate the effects of inert evaporating droplets on scalar dissipation rate χ in temporally-developing turbulent reacting and non-reacting mixing layers with the Reynolds number based on the vorticity thickness up to 8000 and the number of traced Lagrangian droplets up to 107. The detailed instantaneous field analysis and ensemble-averaged statistics reveal complex interactions among combustion, droplet dynamics and evaporation, all of which have a considerable influence on χ. The presence of inert evaporating droplets promotes χ in both non-reacting and reacting mixing layers. In the latter, combustion reduces χ, so when combustion is suppressed by evaporating droplets, χ is enhanced. The transport equation of χ has been analyzed to investigate the various effects on χ in detail. The terms in the equation contain explicitly the evaporation rate and its spatial derivative, acting as a sink and a source for χ, respectively. On the whole, the net effect of the evaporation-rate terms is to promote χ. However, the production and dissipation terms are the dominant source and sink terms, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.