Abstract

We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 5 × 10−4. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity ‘seen’ by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneously lagging the fluid only by a small amount. The particle-conditioned fluid velocity field shows that the particles preferentially reside in the low-speed streaks, leading to the observed apparent lag. Finally, a vortex eduction study reveals that spanwise particle motion is significantly correlated with the presence of vortices with the corresponding sense of rotation which are located in the immediate vicinity of the near-wall particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.