Abstract
To clarify fluid-acoustic interactions in an actual recorder with opened and closed tone holes, flow and acoustic fields were directly numerically simulated on the basis of the compressible Navier-Stokes equations. To validate the simulation accuracy, the flow field around the windway and sound pressure above the window were measured. The predicted acoustic fields clarify changes of the positions of pressure nodes and anti-nodes in accordance with the state of the tone holes and the Mach number of the jet velocity. The fundamental mechanism of the self-sustained oscillations in a three-dimensional actual recorder is visualized by the predicted acoustic and flow fields. This result is also consistent with the relationship between the jet behaviors and pressure fluctuations based on the jet-drive model. Moreover, the effects of the fine vortices in the jet, which appear at the high Mach number of jet velocity of 0.099, on the sound are discussed. The time difference between the generation of the disturbances and the most intense deflection of the jet is identified and compared with the time delay of acoustic reflection around the window.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.