Abstract

AbstractA three‐dimensional direct numerical simulation model coupled with the immersed boundary method has been developed to simulate a pulsatile flow in a planar channel with single and double one‐sided semicircular constrictions. For relevance to blood flow in large arteries, simulations have been performed at Reynolds numbers of 750 and 1000. Flow physics and resultant wall shear stress (WSS)‐based hemodynamic parameters are presented. The instantaneous vortex dynamics, mean flow characteristics, and turbulent energy spectra are evaluated for flow physics. Subsequently, three WSS‐based parameters, namely the time‐averaged WSS, oscillatory shear index, and relative residence time, are calculated over the stenotic wall and correlated with flow physics to identify the regions prone to atherosclerotic plaque progression. Results show that the double stenotic channel leads to high‐intensity and broadband turbulent characteristics downstream, promoting critical values of the WSS‐based parameters in the post‐stenotic areas. In addition, the inter‐space area between two stenoses displays multiple strong recirculations, making this area highly prone to atherosclerosis progression. The effect of stenosis degree on the WSS‐based parameters is studied up to 60% degree. As the degree of occlusion is increased, larger regions are involved with the nonphysiological ranges of the WSS‐based parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.