Abstract

A fundamental continuum-based numerical model was developed to simulate a non-isothermal non-adiabatic reactor which does not employ any empirical closures. The model was able to capture unique features of an exothermic catalytic reactor such as parametric sensitivity, hot-spot formations and multiplicity of steady states. Furthermore, the model inherently accounts for the various aspects of classical phenomenological models such as axial and radial dispersion of heat and mass and the intrinsic coupling of heat and mass transport between the fluid phase and the solid phase. The numerical procedure was validated with existing literature data before moving on to the simulation of a bed consisting of 340 spherical particles packed using the Discrete Element Method. Five simulations were performed by varying the rate of reaction and keeping all other parameters constant to capture the ignition/extinction phenomena exhibited by exothermic packed bed reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.