Abstract

The unsteady periodic flow in a low-pressure (LP) prismatic turbine vane with incoming wakes is computed by direct numerical simulation (DNS), large eddy simulation (LES) and unsteady Reynolds-averaged Navier—Stokes simulations (URANSs). The results are compared with existing measurements at a Reynolds number Re = 5.18 × 104 which reveal the presence of a large unsteady stalled region on the suction side. Both DNS and LES suggest that the boundary layer separates while being still laminar, with subsequent turbulent reattachment. Several URANSs with and without a transition model and a constraint on the turbulence time-scale designed to prevent excessive production in the stagnation region are analysed and compared with the DNS and LES. The useful information provided by DNS and LES has made it possible to improve the results of the URANSs, which ensure a fair reproduction of the flow, especially in terms of blade load and losses, although they partly fail to detail the complex wake—boundary layer interaction in the separated flow region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call