Abstract

This paper establishes the first analytical formula for optimal nonlinear shrinkage of large-dimensional covariance matrices. We achieve this by identifying and mathematically exploiting a deep connection between nonlinear shrinkage and nonparametric estimation of the Hilbert transform of the sample spectral density. Previous nonlinear shrinkage methods were numerical: QuEST requires numerical inversion of a complex equation from random matrix theory whereas NERCOME is based on a sample-splitting scheme. The new analytical approach is more elegant and also has more potential to accommodate future variations or extensions. Immediate benefits are that it is typically 1,000 times faster with the same accuracy, and accommodates covariance matrices of dimension up to 10, 000. The difficult case where the matrix dimension exceeds the sample size is also covered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.