Abstract

Direct non-oxidative methane conversion (DNMC) has been recognized as a single-step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long-term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas-phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.