Abstract
An artificial neural network (ANN) approach was used to develop a new predictive model for the calculation of hydrocarbons breakthrough curves in separation of linear and branched paraffins by adsorption process. Three-layer ANN architecture was trained using an experimental database and the concentration at t time over initial concentration (C/Co) was calculated as output variable. Experimental temperature (T), times of adsorption (t), octane number (ON) and the density (ρ) of the hydrocarbons were considered as main input variables for the model. For the ANN optimization process, the Levenberg–Marquardt (LM) learning algorithm, the hyperbolic tangent sigmoid transfer-function and the linear transfer-function were applied. The best fitting training data set was acquired with an ANN architecture composed by 22 neurons in the hidden layer (4-22-1), which made possible to predict the C/Co with a satisfactory efficiency (R2>0.96). A suitable accuracy of the ANN model was achieved with a mean percentage error (MPE) of ∼5%. All the C/Co predicted with the ANN model were statistically analyzed and compared with the “true” C/Co experimental data reported in the experiments carried out in the lab. With all these results, we suggest that the ANN model could be used as a tool for the reliable prediction of the breakthrough curves obtained during the separation of linear and branched paraffins by adsorption processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.