Abstract

Recent advances in DNA nanotechnology make it possible to fabricate arbitrarily shaped 1D, 2D, and 3D DNA nanostructures through controlled folding and/or hierarchical assembly of up to several thousands of unique sequenced DNA strands. Both individual DNA nanostructures and their assembly can be made with almost arbitrarily shaped patterns at a theoretical resolution down to 2 nm. Furthermore, the deposition of DNA nanostructures on a substrate can be made with precise control of their location and orientation, making them ideal templates for bottom-up nanofabrication. However, many fabrication processes require harsh conditions, such as corrosive chemicals and high temperatures. It still remains a challenge to overcome the limited stability of DNA nanostructures during the fabrication process.This chapter focuses on the proof-of-principle study to directly convert the structural information of DNA nanostructure to various kinds of materials by nanofabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.